Please check the examination details below before entering your candidate information				
Candidate surname			Other names	
Pearson Edexcel Level 3 GCE	Centre	e Number	Candidate Number	
Tuesday 11 June 2019				
Afternoon (Time: 1 hour 45 minutes) Paper Reference 9CH0/02				
Chemistry Advanced Paper 2: Advanced Organic and Physical Chemistry				
Candidates must have: Scientific calculator Data Booklet Ruler Total Marks				

Instructions

- Use **black** ink or **black** ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 90.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- For the question marked with an asterisk (*), marks will be awarded for your ability to structure your answer logically showing the points that you make are related or follow on from each other where appropriate.
- A Periodic Table is printed on the back cover of this paper.

Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Check your answers if you have time at the end.

Turn over ▶

Answer ALL questions.

Some questions must be answered with a cross in a box ⋈.

If you change your mind about an answer, put a line through the box ⋈
and then mark your new answer with a cross ⋈.

1 This question is about some reactions of alcohol	s.
--	----

(a)	(i)	Which alcohol	cannot	be oxidised	by acidified	potassium	dichromate(VI)?
-----	-----	---------------	--------	-------------	--------------	-----------	-----------------

(1)

- A hexan-2-ol
- B 2-methylpentan-2-ol
- C hexan-3-ol
- D 2-methylpentan-3-ol

(ii) Which alcohol reacts with iodine in the presence of alkali to form a yellow solid?

(1)

- A hexan-2-ol
- ☑ B 2-methylpentan-2-ol
- C hexan-3-ol
- **D** 2-methylpentan-3-ol

(b) Which reagent is used with iodine to prepare iodoalkanes from alcohols?

(1)

- A red phosphorus
- ☑ B concentrated phosphoric acid
- C sulfur
- D concentrated sulfuric acid

(Total for Question 1 = 3 marks)

BLANK PAGE

- **2** This question is about alkanes and their reactions.
 - (a) What is the IUPAC name for this alkane?

(1)

- A 4-ethyloctane
- B 5-ethyloctane
- □ 5-propylheptane
- (b) What is the name of the process that could be used to produce propane, C_3H_8 , from decane, $C_{10}H_{22}$?

(1)

- A substitution
- B reforming
- C fractional distillation
- □ D cracking
- (c) A student researched the reaction of propane with bromine and found that the reaction could be used to make 1-bromopropane.

$$C_3H_8(g) + Br_2(I) \rightarrow C_3H_7Br(I) + HBr(g)$$

(i) The first step of the reaction involves

(1)

- A heterolytic bond fission to form free radicals
- **B** heterolytic bond fission to form ions
- C homolytic bond fission to form free radicals
- D homolytic bond fission to form ions

(ii) Calculate the atom economy by mass for the formation of 1-bromopropane in the reaction in (c).

(2)

(iii) A source from the internet gave the percentage yield for this reaction as 31.0%. The best explanation for the low percentage yield of 1-bromopropane in this reaction is

(1)

- ☑ A bromine is very unreactive
- B a gaseous reactant always gives a low yield
- □ C the reaction is very slow
- **D** the reaction produces a mixture of organic products
- (iv) Calculate the volume of propane, in dm³, measured at room temperature and pressure, that is needed to produce 14.7 g of 1-bromopropane, assuming a percentage yield of 31.0%.

Give your answer to an appropriate number of significant figures.

[Molar gas volume at r.t.p. = $24.0 \,\mathrm{dm^3 \,mol^{-1}}$]

(3)

(Total for Question 2 = 9 marks)

3	This question is about compounds of Group 5 elements. (a) Phosphorus forms two chlorides with the formulae PCl ₃ and PCl ₅ . (i) Explain the shape of the PCl ₃ molecule. The bond angle is not required.	(3)
	(ii) Draw a diagram to show the three-dimensional shape of the PCl₅ molecule in	
	the gas phase. Include bond angles and the name of the shape.	(3)
	(iii) Explain why phosphorus forms PCl₅ but nitrogen does not form NCl₅.	(2)

Ехр	lain this difference in boiling temperatures, by referring to all the	
	ermolecular forces present.	(=)
		(5)
•••••		
c) Whi	ich of these compounds produces hydrogen chloride when it reacts with P	Cl₅? (1)
⊠ A	propanal	(-)
⊠ B	propan-1-ol	
⊠ C	propanone	
	propyl propanoate	

4 Methyl cinnamate, $C_{10}H_{10}O_2$, is a white crystalline solid used in the perfume industry.

methyl cinnamate

(a) Calculate the mass of carbon in 2.34g of methyl cinnamate.

(2)

(b) A sample of methyl cinnamate was analysed by high resolution proton NMR spectroscopy.

A simplified spectrum is shown.

(i) Name the compound responsible for the peak at a chemical shift of 0 ppm, stating its purpose.

(2)

(ii) Identify the proton environment that causes the peak at a chemical shift of 3.8 ppm by circling it on the diagram shown. Fully justify your answer.

(3)

- (c) Methyl cinnamate undergoes an addition reaction in the dark with bromine.
 - (i) Draw the mechanism for the reaction between methyl cinnamate and bromine, Br₂.
 Include curly arrows, and relevant lone pairs and dipoles.

(4)

(ii) Deduce the number of optical isomers of the addition product that can exist.

(1)

- **■ B** 3
- **■ D** 8
- (iii) When plane-polarised light is passed through an optical isomer, the plane of polarisation is

(1)

- A diffracted
- B reflected
- **C** refracted
- **D** rotated

(Total for Question 4 = 13 marks)

BLANK PAGE

5 This question is about the arenes, ethylbenzene, xylene, and phenol, which can be identified in wine samples using gas chromatography.

- (a) Ethylbenzene can be formed by the reaction of a chloroalkane with benzene, catalysed by aluminium chloride, AlCl₃.
 - (i) Draw the **displayed** formula of the chloroalkane required for this reaction.

(1)

(ii) Draw the mechanism for this reaction.
Include equations showing the role of the catalyst and how it is regenerated.

(5)

(iii) Explain whether phenol is likely to be less or more reactive than benzene with the chloroalkane from (a)(i).			
(e), (e),	(3)		

(b) A student carried out an experiment to determine the molar mass of xylene.

The student's sample of xylene vapour had a mass of 0.271 g.

At a temperature of 165 °C and a pressure of 118 kPa, this sample had a volume of 70.5 cm³.

Use the Ideal Gas Equation to calculate the molar mass, in g mol⁻¹, of this sample.

Give your answer to an appropriate number of significant figures.

You **must** show your working.

(4)

(c)	The time taken for a compound to pass through the column in gas chromatography is called the retention time.	
	Explain why different compounds will have different retention times in the same column, under the same conditions.	(2)
	(Total for Question 5 = 15 m	arks)

6 The compound flavan-3-ol is found in tea, fruit and wine.

(a) Clearly label all the chiral carbon atoms in flavan-3-ol.

(1)

(b) Give the molecular formula for flavan-3-ol.

(1)

*(c) A sample of flavan-3-ol extracted from wine contained some ethanol. The sample was left in a flask, open to the air for several days. The contents were then analysed to identify any new compounds formed. Several new compounds were found to be present, including some with a distinctive fruity smell.

Identify **four** new organic compounds that could form under these conditions by considering the chemistry of alcohols. Justify your answers. Include the structure of two compounds formed from flavan-3-ol, one of which has a fruity smell.

(6)

4	Z H	ρ,
×	듸	X
`_	1	2
(II	k III z	10
/II	ж,	я,
M	ì	ø
SII	XII.	Ħ.
/°	× ×	Э.
1	◁	ø.
SI	ы	_/
	< 7	٠,
		Ζ.
М	O/P	٧.
O.	~	u)
4	۰	ŵ.
ì	-	ä.
Œ	•	
/1		
М		m.
U		
Ġ	2	4
×	-2	μ.
M	_	
6		=>
24		٥.
SI	i i	ш.
41		a.
28		
SI	-	Ψ.
) II		H)
SI M		3
i	'n	3
d	1	
ļ	7	
d	2	
ļ	\ \ \	
ļ	\ \ \	
ļ	X	
ļ	\ \ \	
ļ	\ \ \	
ļ	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
ļ		
ļ		
ļ		
1		•
ļ		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•
1		•

ET.	
110	
9	
<	
S	
I	
H	
Z	
No. 16 10	
10.16.1	
ш	
ш	
ш	
ш	
끧	
쁜	
쁜	
H	
H	
H	
1 1 1 1 1 1 1 1 1 1	
RITE	
α	
ØR	
ØR	
α	
ØR	
T WR	
ØR	
T WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	
T WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	
OT WR	

	ξ		
	Ù		
	É		
	ú		
Ì			
1			1
		5	
Ĥ			
1			
ì			
Ü			
ø			
л	ĸ.	-	а

(Total for Question 6 = 8 marks)	_]

7 Nitrogen monoxide and chlorine react together to form nitrosyl chloride.

$$2NO(g) + Cl_2(g) \rightarrow 2NOCl(g)$$

(a) Draw a dot-and-cross diagram for nitrosyl chloride, showing only the outer shell electrons.

(2)

- (b) The rate equation for the formation of nitrosyl chloride is $Rate = k[NO]^{2}[Cl_{2}]$
 - (i) Complete the table by adding the missing values.

Experiment	[NO] / mol dm ⁻³	[Cl ₂] / mol dm ⁻³	Rate / mol dm ⁻³ s ⁻¹
1	0.122	0.241	1.09×10^{-2}
2		0.482	8.72 × 10 ⁻²
3	0.366		4.91 × 10 ⁻²

(2)

(ii) Calculate the rate constant, <i>k</i> , using data from Experiment 1. Include units with your answer.	(3)
(iii) Explain how using a catalyst increases the rate constant, k.	(2)

(iv) The heterogeneous catalyst palladium was suggested for use in this reaction Explain how impurities in the gaseous reactants could make the catalyst less effective.	
less effective.	(3)
(Total for Question 7 = 12 m	narks)

8 Gentian violet is a purple crystalline solid used as an antifungal treatment.

It can be synthesised from dimethylphenylamine, C₆H₅N(CH₃)₂.

(a) The dimethylphenylamine used in the synthesis can be made by the stepwise reaction of phenylamine with chloromethane.

Step 1
$$2C_6H_5NH_2 + CH_3Cl \rightarrow C_6H_5NH(CH_3) + C_6H_5NH_3^+Cl^-$$

Step **2**
$$2C_6H_5NH(CH_3) + CH_3Cl \rightarrow C_6H_5N(CH_3)_2 + C_6H_5NH_2^+(CH_3)Cl^-$$

The reaction mechanism for Step 1 between phenylamine and chloromethane is the same as that in the reaction between ammonia and chloromethane.

(i) What is the reaction type and mechanism in Step 1?

(1)

- A electrophilic addition
- B electrophilic substitution
- □ C nucleophilic addition
- **D** nucleophilic substitution
- (ii) Draw the mechanism for the reaction in Step 1. Include curly arrows, and relevant lone pairs and dipoles.

(4)

(iii) Describe, in outline, how a sample of a solid, such as gentian violet, is purified by recrystallisation.

Specific details of the solvent used are not required.

(4)

(b) The rate constant for the reaction between a solution of gentian violet and aqueous sodium hydroxide was determined at different temperatures.

Temperature (<i>T</i>) / K	1 / Temperature (1/ <i>T</i>) / K ⁻¹	Rate constant, k / dm ³ mol ⁻¹ s ⁻¹	In k
283.5	3.53×10^{-3}	2.71×10^{-3}	-5.91
287.5	3.48 × 10 ⁻³	3.55 × 10 ⁻³	
291.5		4.75 × 10 ⁻³	-5.35
295.0	3.39 × 10 ⁻³	6.10 × 10 ⁻³	-5.10
298.5	3.35 × 10 ⁻³	7.60 × 10 ⁻³	-4.88

(i) Complete the data in the table.

(1)

(ii) Plot a graph and use it to determine the activation energy for the reaction in kJ mol⁻¹. You should include the value and units of the gradient of the line.

The Arrhenius equation can be shown as

$$\ln k = -\frac{E_{\rm a}}{R} \times \frac{1}{T} + \text{constant}$$

(6)

Gradient

Activation energy

(Total for Question 8 = 16 marks)

TOTAL FOR PAPER = 90 MARKS

The Periodic Table of Elements

0 (8) (18) 4.0 He helium 2	20.2 Ne neon 10	39.9 Ar argon 18	83.8 Kr krypton 36	Xe xenon 54	[222] Rn radon 86
7 (71)	19.0 F fluorine 9	35.5 Cl chlorine 17	79.9 Br bromine 35	126.9 I iodine 53	[210]
6 (16)	16.0 O oxygen 8	32.1 S sulfur 16	79.0 Selenium 34	127.6 Te tellurium 52	[209] Po polonium 84
5 (15)	14.0 N nitrogen 7	31.0 P phosphorus 15	74.9 As arsenic 33	Sb antimony 51	209.0 Bi bismuth 83
4 5	12.0 C carbon 6	Si Si silicon	72.6 Ge germanium	118.7 Sn tin 50	207.2 Pb lead 82
3 (13)	10.8 B boron 5	27.0 Al aluminium	69.7 Ga gallium 31	In In indium 49	204.4 Tl thallium 81
		(12)	65.4 Zn zinc 30	£d Cd cadmium 48	200.6 Hg mercury 80
		(11)	63.5 Cu copper 29	107.9 Ag silver 47	197.0 Au gold 79
		(10)	58.7 Ni nickel	106.4 Pd palladium 46	195.1 Pt platinum 78
		6)	58.9 Co cobalt 27	102.9 Rh n rhodium p	192.2 Ir iridium 77
1.0 H hydrogen		(8)	55.8 Fe iron 26	Ru Ru ruthenium 44	190.2 Os osmium 76
		0	Mn manganese 25	95.9 [98] 101.1 103 Mo Tc Ru R Ru R Ru R Ru R R	186.2 Re rhenium 75
	mass ool umber	(9)	52.0 54.9 Cr Mn chromium manganese 24 25	95.9 Mo motybdenum 42	183.8 W tungsten 74
Key	relative atomic mass atomic symbol name atomic (proton) number	(5)	50.9 V vanadium 23	92.9 Nb niobium 41	180.9 Ta tantalum 73
	relati ato l atomic	(4)	47.9 Ti titanium 22	91.2 Zr zirconium 40	178.5 Hf hafnium 72
		(3)	45.0 Sc scandium 21	88.9 Y yttrium 39	138.9 La* lanthanum 57
7 (2)	9.0 Be beryllium 4	24.3 Mg magnesium 12	40.1 Ca calcium 20	87.6 Sr strontium	137.3 Ba barium 56
t (f)	6.9 Li lithium 3	23.0 Na sodium 11	39.1 K potassium 19	85.5 Rb rubidium 37	132.9 Cs caesium 55

_				rted					
ğ	astatine	82		been repo				175	2
<u></u>	polonium	84		116 have !	nticated			173	χ
Bi	bismuth	83		mbers 112-	but not fully authenticated			169	Ē
Ъ	lead	82		atomic nu	but not f			167	ъ
F	thallium	81		Elements with atomic numbers 112-116 have b				165	운
Ħ	mercury	80		Elen				163	5
Αď	gol	_ 6/_	[272]	Rg	roentge	111		159	P
¥	platinum	78	[271]		darmstadtium	110		157	В
1	iridium	77	[368]	Mt	meitnerium	109		152	En
o	osmium	9/	[277]	£	hassium	108		150	Sm
æ	rhenium	75	[264]	뮵	bohrium	107		[147]	Pa
>	tungsten	74	[592]	Sg	seaborgium	106		144	Ž
Та	tantalum	73	[797]	В	dubnium	105		141	P
			[261]					140	g
La*	lanthanum	22	[227]	Ac*	actinium	86			es
	_		_		_		ı		eries

[226] **Ra**radium
88

Cs caesium 55 [223] Fr francium 87

* Lanthanide series Ce

	140	141	144	[147]	150	152	157	159	163	165	167	169	173	175
series	g	<u>ڄ</u>		Pa	Sm	En	В	ТР	δ	운	ы	Ē	χ	3
jo	cerium	praseodymium	ø	promethium	samarinm	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium
5	28	26	9	61	62	63	64	65	99	67	68	69	70	71
	232	232 [231]	238	[237]	[242]	[243]	[247]	[245]	[251]	[254]	[253]	[526]	[254]	[257]
	₽	Pa		δ	P	Αm	Ę	æ	უ	E	Fm	PΨ	ž	ځ
	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
	06	91	92	93	94	95	96	46	86	66	100	101	102	103